skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Janson, Svante"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Given a graphon $$W$$ and a finite simple graph $$H$$ , with vertex set $V(H)$ , denote by $$X_n(H, W)$$ the number of copies of $$H$$ in a $$W$$ -random graph on $$n$$ vertices. The asymptotic distribution of $$X_n(H, W)$$ was recently obtained by Hladký, Pelekis, and Šileikis [17] in the case where $$H$$ is a clique. In this paper, we extend this result to any fixed graph $$H$$ . Towards this we introduce a notion of $$H$$ -regularity of graphons and show that if the graphon $$W$$ is not $$H$$ -regular, then $$X_n(H, W)$$ has Gaussian fluctuations with scaling $$n^{|V(H)|-\frac{1}{2}}$$ . On the other hand, if $$W$$ is $$H$$ -regular, then the fluctuations are of order $$n^{|V(H)|-1}$$ and the limiting distribution of $$X_n(H, W)$$ can have both Gaussian and non-Gaussian components, where the non-Gaussian component is a (possibly) infinite weighted sum of centred chi-squared random variables with the weights determined by the spectral properties of a graphon derived from $$W$$ . Our proofs use the asymptotic theory of generalised $$U$$ -statistics developed by Janson and Nowicki [22]. We also investigate the structure of $$H$$ -regular graphons for which either the Gaussian or the non-Gaussian component of the limiting distribution (but not both) is degenerate. Interestingly, there are also $$H$$ -regular graphons $$W$$ for which both the Gaussian or the non-Gaussian components are degenerate, that is, $$X_n(H, W)$$ has a degenerate limit even under the scaling $$n^{|V(H)|-1}$$ . We give an example of this degeneracy with $$H=K_{1, 3}$$ (the 3-star) and also establish non-degeneracy in a few examples. This naturally leads to interesting open questions on higher order degeneracies. 
    more » « less